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Abstract

Background: Cognitive impairment is common in patients with multiple sclerosis (MS). Accurate and repeatable
measures of cognition have the potential to be used as markers of disease activity.

Methods: We developed a 5-min computerized test to measure cognitive dysfunction in patients with MS. The
proposed test – named the Integrated Cognitive Assessment (ICA) – is self-administered and language-
independent. Ninety-one MS patients and 83 healthy controls (HC) took part in Substudy 1, in which each
participant took the ICA test and the Brief International Cognitive Assessment for MS (BICAMS). We assessed ICA’s
test-retest reliability, its correlation with BICAMS, its sensitivity to discriminate patients with MS from the HC group,
and its accuracy in detecting cognitive dysfunction. In Substudy 2, we recruited 48 MS patients, 38 of which had
received an 8-week physical and cognitive rehabilitation programme and 10 MS patients who did not. We
examined the association between the level of serum neurofilament light (NfL) in these patients and their ICA
scores and Symbol Digit Modalities Test (SDMT) scores pre- and post-rehabilitation.

Results: The ICA demonstrated excellent test-retest reliability (r = 0.94), with no learning bias, and showed a high
level of convergent validity with BICAMS. The ICA was sensitive in discriminating the MS patients from the HC
group, and demonstrated high accuracy (AUC = 95%) in discriminating cognitively normal from cognitively
impaired participants. Additionally, we found a strong association (r = − 0.79) between ICA score and the level of
NfL in MS patients before and after rehabilitation.

Conclusions: The ICA has the potential to be used as a digital marker of cognitive impairment and to monitor
response to therapeutic interventions. In comparison to standard cognitive tools for MS, the ICA is shorter in
duration, does not show a learning bias, and is independent of language.

Keywords: Multiple sclerosis, BICAMS, Digital biomarkers, Integrated cognitive assessment (ICA), Language-
independent, Artificial intelligence (AI)
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Background
Multiple sclerosis (MS) is characterized by widespread
demyelination and neurodegeneration in the central ner-
vous system [1]. Therefore, cognitive dysfunction is
common in MS patients (40–70% of these patients are
reported to have cognitive impairment [2]), and is asso-
ciated with a higher risk of disease progression in the
subsequent years [2]. Cognitive impairment can have
significant negative impacts on several domains of daily
living activities, such as social functioning, employment
[3] and driving [4]. Despite the prevalence of cognitive
impairment and its negative impact on patients’ lives,
cognitive assessment is not routinely carried out for MS
patients [5].
Early detection of cognitive impairment in MS could

be helpful in the identification of patients at high risk of
disability progression and poor clinical outcome [6]. Fur-
thermore, cognition has the potential to be used as a
marker of disease progression or treatment efficacy in
MS [7, 8]. When patients report a cognitive problem,
they are describing a change in function from a previous
level; however, the majority of cognitive tests, due to a
learning bias [9, 10], cannot be used for frequent moni-
toring of cognitive performance. On the other hand,
neuroimaging and fluid biomarkers of disease activity
[11–13], while more accurate, are less suitable for fre-
quent monitoring of disease progression and more diffi-
cult to integrate into routine clinical practice. Here, we
propose an AI-assisted digital biomarker of cognitive
function, appropriate for monitoring disease activity.
There is evidence that the afferent visual system is

highly vulnerable to MS [14]. Furthermore, deficit in in-
formation processing speed (IPS) is the most prevalent
cognitive impairment in MS, and can affect the speed of
sensory, motor and cognitive processes [15]. We de-
signed an iPad-based rapid visual categorization task
[16–18] the Integrated Cognitive Assessment (ICA), that
primarily assesses IPS in visuomotor domains. The task
is designed to give a sensitive, repeatable measure of IPS,
and is additionally shown to be correlated with other
cognitive domains, such as verbal memory and visuo-
spatial abilities [19]. The test is software-based, self-
administered and is shown to have little dependency on
participants’ language, and is not confounded by partici-
pants’ varying levels of education [19].
To measure the efficacy of the proposed ICA test in

detecting cognitive impairment in MS patients, we com-
pared the ICA with the Brief International Cognitive As-
sessment for MS (BICAMS) [20, 21]. BICAMS is a pen-
and-paper based cognitive assessment battery for detect-
ing cognitive dysfunction in MS patients. The BICAMS
battery includes tests of mental processing speed as well
as visuospatial and verbal learning, and takes about 15 to
20min to administer and score.

To further assess the validity of the ICA test as a po-
tential digital biomarker of MS disease activity, we com-
pared ICA test results with participants’ level of serum
neurofilament light chain (NfL). NfL has been shown to
be a valuable fluid biomarker of MS disease activity and
treatment response [22], and is associated with clinical
and MRI-related measures of disease activity and neu-
roaxonal damage [23]. Changes in NfL are shown to be
associated with changes in global cognition and atten-
tion [24]. Furthermore, elevated baseline plasma NfL is a
prognostic marker of cognitive decline and neuro-
imaging measures of neurodegeneration, and has similar
effect sizes to baseline cerebrospinal fluid (CSF) NfL [24].
We report results for convergent validity between

BICAMS and ICA, test-retest reliability, correlation be-
tween ICA score and serum NfL, the effects of repeated
exposure to the tests (i.e. learning bias), sensitivity to de-
tecting cognitive impairment, and the accuracy of the
ICA in discriminating MS patients from healthy controls
(HC).

Methods
ICA test description and the scientific rationale behind
the test
The ICA test is a rapid visual categorization task with
backward masking [17, 18, 25]. The test takes advantage
of the human brain’s strong reaction to animal stimuli
[25, 26]. One hundred natural images (50 animal and 50
non-animal) are carefully selected, with varying levels of
difficulty, and are presented to the participants in rapid
succession. Images are presented in the center of the
screen at a 7° visual angle. In some images the head or
body of the animal is clearly visible to the participants,
which makes it easier to detect. In other images the ani-
mals are further away or otherwise presented in clut-
tered environments, making them more difficult to
detect. A few sample images are shown in Fig. 1. We
used grayscale images to remove the possibility of color
blindness affecting participants’ results. Furthermore,
color images can facilitate animal detection solely based
on color [27, 28], without full processing of stimulus
shape. This could have made the task easier and less
suitable for detecting less severe cognitive dysfunctions.
The strongest categorical division represented in the

human higher level visual cortex appears to be that be-
tween animates and inanimates [29, 30]. Studies also
show that on average it takes about 100 ms to 120 ms
for the human brain to differentiate animate from inani-
mate stimuli [26, 31, 32]. Following this rationale, each
image is presented for 100 ms followed by a 20 millisec-
ond inter-stimulus interval (ISI), followed by a dynamic
noisy mask (for 250 ms), followed by the subject’s
categorization into animal vs. non-animal (Fig. 1).
Shorter ISI durations can make the animal detection
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task more difficult and longer durations reduce the po-
tential use for testing purposes as it may not allow for
the detection of less severe cognitive impairments. The
dynamic mask is used to remove (or at least reduce) the
effect of recurrent processes in the brain [33, 34]. This
makes the task more challenging by reducing the on-
going recurrent neural activity that could artificially
boost a subject’s performance and further reduces the
chances of learning the stimuli. For more information
about rapid visual categorization tasks refer to Mirzaei
et al., (2013) [17].
The ICA test starts with a different set of 10 test im-

ages (5 animal, 5 non-animal) to familiarize participants
with the task. These images are later removed from
further analysis. If participants perform above chance
(> 50%) on these 10 images, they will continue to the main
task. If they perform at chance level (or below), the test
instructions will be presented again, and a new set of 10
introductory images will follow. If they perform above
chance in this second attempt, they will progress to the
main task. If they perform below chance for the second
time the test is aborted.

Backward masking
To construct the dynamic mask a white noise image was
filtered at four different spatial scales, and the resulting
images were thresholded to generate high contrast

binary patterns following the procedure in Bacon-Macé
and colleagues (2005) [16, 17]. For each spatial scale,
four new images were generated by rotating and mirror-
ing the original image, creating a pool of 16 images. The
noisy mask used in the ICA test was a sequence of 8 im-
ages, chosen randomly from the pool, with each of the
spatial scales appearing twice.

Brief international cognitive assessment for MS (BICAMS)
The BICAMS battery consists of three standard pen-
and-paper tests, measuring speed of information pro-
cessing, visuospatial learning and verbal learning.

Symbol digit modalities test (SDMT)
The SDMT is designed to assess speed of information
processing, and takes about 5 min to administer [35].
The test is formed of a simple substitution task. Using a
reference key, the examinee has 90 s to pair specific
numbers with given geometric figures.

California verbal learning test - 2nd edition (CVLT-II)
The CVLT-II test [36, 37] measures episodic verbal
learning. The test begins with the examiner reading a list
of the 16 words. Participants listen to the list and then
report as many of the items as they can recall. Five
learning trials of the CVLT-II are used in BICAMS [20],
which takes about 10 min to administer.

Fig. 1 The ICA test pipeline. One hundred natural images (50 animal and 50 non-animal) with various levels of difficulty are presented to the
participants. Each image is presented for 100 ms followed by 20ms inter-stimulus interval (ISI), followed by a dynamic noisy mask (for 250 ms),
followed by categorization into animal vs. non-animal. A few sample images are shown for demonstration purposes
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Brief visual memory test – revised (BVMT-R)
The BVMT-R test assesses visuospatial learning (i.e. im-
mediate recall) and memory (delayed recall) [38, 39].
Only learning trials of BVMT-R are included within
BICAMS. Here, in three consecutive trials, six abstract
shapes are presented to the participant for 10 s. After
each trial, the display is removed from view and patients
are asked to draw the stimuli via pencil on paper manual
responses. The test takes about 5 min to administer.

Participants
In total, 174 participants took part in Substudy 1
(Table 1): 91 patients diagnosed with multiple sclerosis
(MS), and 83 healthy controls matched for age, gender
and education. Fourty-eight MS patients took part in
Substudy 2 (Table 2). Of all participants, 25 attended
both substudies. Participants’ age varied between 18 and
65. The study was conducted according to the Declar-
ation of Helsinki and approved by the local ethics com-
mittee at Royan Institute. Informed written consent was
obtained from all participants. Patient participants were
consecutively recruited from the outpatient clinic of the
Aria Medical Complex for MS in Tehran, Iran. Patients
were diagnosed by a consultant neurologist according to
the McDonald diagnostic criteria (2010 revision) [40].
Healthy controls (HC) were recruited through local
advertisements.
Exclusion criteria: severe depression and other major

psychiatric comorbidities, presence of neurological dis-
orders and medical illness that independently affect
brain function and cognition (other than MS for the pa-
tient group), visual problems that cannot be corrected
with eye-glasses such that the problem prevents partici-
pants from reading, upper limb motor dysfunction, his-
tory of epileptic seizures, history of illicit substance and/
or alcohol dependence.
For each participant, the clinical characteristics of MS

subtype, information on age, education and gender were

also collected. We quantified participant disability and
disability progression over time by utilising the Ex-
panded Disability Status Scale (EDSS).
For the purposes of this study, patients with severe ab-

normality in at least one of the BICAMS sub-tests (de-
fined as 2 standard deviations (SD) below the norm) or
with mild abnormality (defined as 1 SD below the norm)
in at least two sub-tests of BICAMS were identified as
cognitively impaired.

Study procedures
Substudy 1
One hundred seventy-four participants (Table 1) took
the iPad-based ICA test and the pen-and-paper BICAMS
test, administered in random order. The same re-
searchers who administered the BICAMS directed par-
ticipants on how to take the ICA test. In this substudy,
we investigated convergent validity of the ICA test with
BICAMS, ICA’s test-retest reliability and the sensitivity
and specificity of the ICA platform in detecting cognitive
impairment in MS.
To measure test-retest reliability for the ICA test, a

subset of 21 MS and 22 HC participants were called
back after 5 weeks (± 15 days) to take the ICA test as
well as the SDMT. The subset’s characteristics were
similar to the primary set in terms of age, education and
gender ratio. For both SDMT and the ICA, the same
forms of the tests were used in the re-test session. Note
that in the ICA test, while the images were the same,
they were presented in a different random order in each
administration.

Substudy 2
In this substudy, we investigated ICA’s correlation with
the level of serum NfL in 48 MS patients (Table 2). Par-
ticipants took both the ICA and the SDMT test, admin-
istered in random order. The ICA and SDMT were
administered in the same session, but blood samples
were collected in another visit with a gap of 2–3 days in
between.
Blood samples were collected in tubes for serum isola-

tion, then centrifuged at 3000 rpm for 20min of blood
draw, and finally placed on ice. Serum samples were
measured at 1:4 dilution. NfL concentrations in serum
were measured using a commercial ELISA (NF-light®
ELISA, Uman Diagnostics, Umeå, Sweden). We used
Anti NF-L monoclonal antibody (mAB) as a capture
antibody and a biotin-labeled Anti NF-L mAB as the de-
tection antibody. All samples were measured blinded.
ELISA readings were converted to units per milliliter by
using a standard curve constructed by calibrators (Bo-
vine lyophilized NfL obtained from UmanDiagnostics).
Participants in Substudy 2 also attended an 8-week

physical and cognitive rehabilitation program, details of

Table 1 Demographic and disease related information for
participants in substudy 1

Characteristic MS (n = 91) HC (n = 83) p-value

Age –mean years ± SD 37.24 ± 10.2 36 ± 10 0.42

Education in years –mean ± SD 14.21 ± 3.16 14.81 ± 2.5 0.16

Gender (%female) 75 (82%) 58 (70%) 0.052

Disease Duration (in years) 6.8

Disease course

Relapsing remitting 83 (91%)

Secondary progressive 6 (7%)

Primary progressive 2 (2%)

EDSS –mean ± SD 1.27 ± 1.8

P-values come from a two-sample t-test. MS: Multiple Sclerosis. HC: Healthy
Controls. SD: standard deviation
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which are reported in separate studies [41, 42]. The
physical rehabilitation program included a combination
of endurance and resistance exercises, with gradually in-
creasing intensities over the 8-week period. The cogni-
tive rehabilitation program included playing newly-
developed games in a virtual reality (VR) environment,
targeting sensorimotor integration, memory-based navi-
gation and visual search. For the purpose of this study
we measure pre- and post-rehabilitation ICA results for
these group of participants, and the ICA correlation with
NfL pre- and post-rehabilitation.
Participants were divided into a rehabilitation group of

38 individuals and a control group of ten; the control
group only took the tests before and after these 8 weeks
without attending the rehabilitation program. The re-
habilitation group attended three sessions each week,
each of them lasting about 70 min.

Accuracy, speed and ICA summary score calculations
In the ICA, participants’ responses to each image and
their reaction times (i.e. time between image onset and
response) are recorded and used to calculate their over-
all accuracy and speed. Speed and accuracy are then
used to calculate an overall summary score, called the
ICA score.
Accuracy is simply defined as the number of correct

categorizations divided by the total number of images,
multiplied by 100.

Accuracy ¼ number of correct categorizations
total number of images

� 100 ð1Þ

Speed is defined based on participants’ response reac-
tion times to images they categorized correctly.

Speed ¼ 100; 100� e
−mean correct RT

1025 þ0:341
h i

ð2Þ

RT: reaction time.
e: Euler’s number ~ 2.7182 … …
Speed is inversely related to reaction time; the higher

the speed, the lower the reaction time.

Preprocessing
We used a boxplot to remove outlier reaction times, be-
fore computing the ICA score. A boxplot is a non-
parametric method for describing groups of numerical
data through their quartiles; and allows for detection of
outliers in the data. Following the boxplot approach,

reaction times greater than q3 + w * (q3 - q1) or less
than q1 - w * (q3 - q1) are considered outliers (where q1
is the lower quartile, and q3 is the upper quartile of the
reaction times; and “w” is a ‘whisker’; w = 1.5). The num-
ber of reaction-time data points removed by the boxplot
can vary case by case; if this number exceeds 40% of the
observed images, the results are deemed invalid and a
warning is shown to the clinician to repeat the test. In
this study none of the participants faced such a warning.
The maximum percentage of outliers was 15%, which
happened in one of the MS patients.
The ICA score is a combination of accuracy and

speed, defined as follows:

ICA Score ¼ Speed
100

� Accuracy
100

� �
� 100 ð3Þ

ICA’s artificial intelligence (AI) engine
ICA’s AI engine (Fig. 2) used in this study was a multi-
nomial logistic regression (MLR) classifier trained based
on a set of features extracted from the ICA test output
for each participant. These features included the ICA
score, and the trends of speed and accuracy during the
test (i.e. whether the speed and/or accuracy were in-
creasing or decreasing during the time-course of the
test). The classifier also took subject’s age, gender and
education in order to match subjects with similar
demographics.
Multinomial logistic regression classifier (MLR)

[43] is a supervised regression-based learning algorithm.
The learning algorithm’s task is to learn a set of weights
for a regression model that maps participants’ ICA test
output to classification labels.
The difference between ICA’s AI engine in detecting

cognitive impairment and the conventional way of defin-
ing a cut-off value for the outcome score of the test is
further discussed in the discussion section.

Results
Convergent validity with BICAMS, and sensitivity to MS
In Substudy 1, we assessed convergent validity by exam-
ining the correlation between scores on the ICA test and
the BICAMS battery (i.e. SDMT, BVMT-R and CVLT-
II). Figure 3 presents scatterplots examining the relation-
ship between BICAMS and ICA test performance. A
high level of convergent validity is demonstrated be-
tween ICA and BICAMS. Within the BICAMS battery,
SDMT had the highest correlation with the ICA test for

Table 2 Demographic and disease related information for participants in Substudy 2

Number of Participants Disease Course Age- mean years ± SD Gender (%female) EDSS- mean ± SD Education Disease Duration

48 MS patients Relapsing remitting 34.12 ± 8.5 31 (64%) 2.95 ± 0.92 14.79 ± 1.41 8.27 ± 5.20
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the HC (Pearson’s r = 0.81, p < 10− 14), MS (r = 0.71,
p < 10− 13), and combined (r = 0.82, p < 10− 11) groups.
Scatterplots show ICA vs. BICAMS correlation separ-
ately for MS and HC; combining results from both
groups (n = 174 total), we find a correlation of 0.82
with SDMT (p < 10− 15), 0.71 with CVLT-II (p <
10− 10), and 0.60 with BVMT-R (p < 10− 8). The correl-
ation results between BICAMS and ICA are largely

similar when including only relapsing-remitting MS
patients (RRMS) [r (SDMT) =0.71 (p < 10–13); r
(BVMT-R) = 0.51 (p < 10–6); r (CVLT-II) = 0.56 (p <
10–7)]. Correlations between ICA’s speed and accur-
acy components with the BICAMS battery are also re-
ported in Table 3. Furthermore, we calculated
BICAMS composite score by averaging the z-scores of
the CVLT-II, the BVMT-R, and the SDMT. ICA had

Fig. 2 ICA’s AI’s pathway. The ICA measures categorization accuracy, processing speed, accuracy and speed over time and the raw data from
these measurements are combined with patients’ demographic data, in order to provide a predictive score about participant’s cognitive status.
The above-mentioned extracted features from the ICA raw data, plus patient’s demographic data are fed into an MLR classifier hosted on amazon
AWS cloud services. The classifier then returns its predicted cognitive status, along with a probability, associated with the label, that shows how
confident the AI engine is about the predicted label. The icons used in this figure are taken from Microsoft Office free icon library

Fig. 3 Correlation between BICAMS and ICA for (a) MS patients and (b) healthy controls. Each scatter plot shows the ICA score (y axis) vs. one of
the tests in BICAMS (x axis). Each blue dot indicates an individual; the blue dashed lines are results of linear regression, fitting a linear line to the
data in each plot. For each plot, the Pearson correlation between ICA and a BICAMS test is written in the bottom-right corner. If we combine the
data from MS patients and healthy controls (n = 174 total), the ICA vs. BICAMS correlations will be the following: correlation with SDMT: 0.82 (p <
10–11); BVMT-R: 0.60 (p < 10–8); CVLT-II: 0.71 (p < 10–10). ICA: Integrated Cognitive Assessment; SDMT: Symbol Digit Modalities Test; BVMTR: Brief
Visual Memory Test–Revised; CVLT-II: California Verbal Learning Test -2nd edition. Stars (*) show significant correlation at p < 10–8
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a correlation of r = 0.82 (p < 10− 11) with BICAMS
composite score.
To compare the sensitivity of the BICAMS and ICA in

detecting MS dysfunctions, we compared mean test
scores in MS and HC groups separately for BICAMS
battery of tests and the ICA test (Table 4). Within the
BICAMS battery, SDMT and CVLT-II could differenti-
ate between HC and MS patients (Table 4). The scores
on both SDMT and CVLT-II were significantly lower for
the MS patients compared to the HC group. However,
there was no significant difference between BVMT-R
scores of the HC and MS groups. These results are con-
sistent with previous findings showing that SDMT has a
better sensitivity in detecting MS compared to other
tests within the BICAMS battery [20, 44]. We repeated
these analyses for the subset of RRMS patients (Supple-
mentary Table 1), the results of which were similar to
when all patients were included.
As shown in Table 4, the ICA could discriminate be-

tween HC group and MS patients, at least as accurately
as the SDMT; however, the ICA, as a digital test, has the
advantages described in Fig. 8.
Given that the ICA test involves tapping left or right

on an iPad, we investigated the relation between hand-
edness and ICA score. The correlation between ICA
score and handedness was r = − 0.13, p = 0.07 (not
significant), which is comparable (and lower) than the
correlation between handedness and SDMT’s score
(r = − 0.17).

ICA accuracy in detecting cognitive impairment
45% of MS patients were identified to have cognitive im-
pairment. Using an ROC curve (Fig. 4), we then assessed
the accuracy of the ICA’s AI engine (i.e. MLR classifier)
in discriminating cognitively healthy from cognitively
impaired individuals (Fig. 4, area under curve (AUC) =
95.1%, sensitivity = 82.9%, and specificity = 96.1%.)

ICA and SDMT correlations with Neurofilament light (NfL)
NfL is a promising fluid biomarker of disease monitoring
for various brain disorders, such as Alzheimer’s Disease
and Multiple Sclerosis [45, 46] . In Substudy 2, we dem-
onstrated that there is a strong correlation between ICA
score and the level of serum NfL (r = − 0.79, p < 10− 10)
(Fig. 5a). For comparison, on the same set of MS par-
ticipants, SDMT correlations with NfL is also reported
(r = − 0.67, p < 10− 6) (Fig. 5b). SDMT and ICA were both
administered in the same session.

ICA’s performance pre- and post- rehabilitation
We examined the level of serum NfL pre- and post- re-
habilitation, as well as patientś EDSS and ICA scores
(Fig. 6). In the rehabilitation group, after the 8-week re-
habilitation program, we observed a significant increase
in ICA score (Cohen’s d = 0.8, p < 0.0001), and a signifi-
cant decrease in serum-NfL (d = − 0.4, p < 0.01) and
EDSS score (d = − 0.4, p < 0.01). In the control group, we
found the opposite pattern after 8 weeks, that is a de-
crease in ICA score (d = − 0.4, p > 0.05) and a significant

Table 3 Speed and accuracy correlations with BICAMS

SDMT BVMT-R CVLT-II

Speed r = 0.66 * r = 0.42 * r = 0.52 *

Accuracy r = 0.55 * r = 0.46 * r = 0.52 *

Pearson correlations between the BICAMS battery and speed, accuracy
components of the ICA test across all participants. (* shows statistical
significance at p < 10−6)

Table 4 Mean ICA and BICAMS scores per group

MS (n = 91) HC (n = 83)

BICAMS mean SD mean SD Difference Cohen’s d p-value

SDMT 41.04 11.02 54.73 9.77 13.69 1.31 < 10− 14

BVMT-R 21.89 6.95 23.69 5.17 1.80 0.29 =0.0565

CVLT-II 48.96 11.13 58.28 6.59 9.32 1.00 < 10−9

ICA

ICA score 63.67 13.30 78.43 9.86 17.76 1.26 < 10−13

Accuracy 84.97 11.66 89.57 5.79 4.60 0.50 =0.0014

Speed 74.54 12.26 87.76 10.11 13.22 1.16 < 10−12

Mean and standard deviations (SD) for BICAMS test scores and the ICA test
scores are compared for MS patients versus healthy controls (HC). The ICA
score is a composite score made of both speed and accuracy of participants in
ICA’s rapid visual categorization task. P-values come from a two-sample t-test

Fig. 4 ROC curve for the ICA test in discriminating cognitively
impaired from cognitively healthy individuals. A multinomial logistic
regression classifier was trained based on the ICA test output, and
tested using leave-one-out cross-validation. AUC =95.1%;
Sensitivity = 82.9%; Specificity = 96.1%
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increase in serum-NfL (d = 0.9,p < 0.001) and EDSS score
(d = 1.0, p < 0.03).

ICA test-retest reliability and absence of a learning bias
Test-retest reliability was measured by computing the
Pearson correlation between the two ICA scores. R
values for test-retest correlation are considered adequate
if > 0.70 and good if > 0.80 [47].

Figure 7 presents scatterplots of ICA performance
comparing 1st administration versus 2nd administration
of the test for the HC, MS, and combined groups. Test–
retest reliability was high, with correlation values in the
range between 0.91 and 0.94.
In the subgroup of participants (21 MS and 22 HC)

who took the ICA and SDMT for a second time, we
studied whether they could perform better because of a
previous exposure to either of the tests. This is called a

Fig. 5 ICA correlation with severity of neural damage, as measured by serum NfL. Each scatter plot shows the NfL level in serum (y axis) vs. ICA
or SDMT (x axis). Each blue dot indicates an individual; the blue dashed lines are results of linear regression, fitting a linear line to the data in
each plot. For each plot, the Pearson correlation between NfL level and the reference cognitive test is written in the bottom-left. Stars (*) show
significant correlations at p < 10− 6

Fig. 6 a Participants were divided into the rehabilitation group and the control group. All participants were assessed with ICA, serum NfL and
their EDSS score at the baseline and after 8 weeks. b ICA had a significant correlation of r = − 0.79 (p < 10− 10) with NfL at baseline (also reported
in Fig. 5a), and a significant correlation of r = − 0.75 (p < 10− 8) after the 8 weeks. c The bars indicate the average ICA, EDSS and the level of NfL at
the baseline, and after the 8 weeks separately for each group of participants. Connected lines from the light gray bars (baseline) to dark gray bars
(follow-up) show the changes in score for each individual. The difference between the two bars are reported in Cohens’ d below each pair of the
bar graphs. The icons used in this figure are taken from Microsoft Office free icon library
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learning bias (also referred to as a practice effect). As
shown in Table 5, comparing the first and second ad-
ministration of the ICA and SDMT tests, ICA showed
no learning bias. However, we see an improvement in
participants’ average SDMT score. This improvement in
SDMT score (i.e. learning bias) was statistically signifi-
cant in the HC group, but not in the MS group.

ICA correlation with EDSS, age and education
To further characterize the ICA score and its relation-
ship with other measures from the MS patients, we cal-
culated the correlation between ICA score and patients’
EDSS, age and education (Table 6). Both BICAMS and
ICA scores were negatively correlated with patients’
EDSS, demonstrating an inverse relation between dis-
ability scale and cognitive performance. For all the tests,
we also observed a decrease in performance as age
increased, showing the effect of aging on cognitive per-
formance. All tests were correlated with participants’
level of education, with ICA having the lowest
correlation.

Discussion
In this validation study, we demonstrate that the ICA
test has convergent validity with BICAMS, with an ex-
cellent test-retest reliability comparable to that reported

for SDMT [10]. In the ICA test, comparing speed versus
accuracy (Table 4), speed seems to play a more signifi-
cant role in discriminating MS patients from HC partici-
pants. This corroborates findings from other studies
suggesting slower speed of information processing as a
key deficit in multiple sclerosis [48]. IPS impairment
also underlies other areas of cognitive dysfunction
[15, 49]. This is because the speed with which an in-
dividual performs a cognitive task is not simply an
isolated function of the processes required in that
task, but also a reflection of their ability to rapidly
carry out many different types of processing opera-
tions. In the case of ICA, these operations include
transferring visual information through retina to
higher level visual areas (i.e. sensory speed), process-
ing the image representation in the visual system to
categorize it into animal or non-animal (i.e. cognitive
speed), and then translating this into a motor re-
sponse (i.e. motor speed).
We also explored the link between disability (as mea-

sured by EDSS) and cognitive impairment. Patients with
cognitive impairment are typically found to be at higher
risk of developing further disability [6, 8]. While we did
not carry out a long-term monitoring of disability
progression in our patients in this study, the negative
correlation between ICA score and EDSS score

Fig. 7 Test-retest reliability scatter plots for the ICA test. Scatterplots are presented comparing ICA scores at Time 1 versus Time 2 administrations
for the MS, HC, and combined groups. The gap between the 1st and the 2nd administration of the ICA test was 5 weeks (+ − 15 days). Reliability
is calculated using Pearson’s r. The test-retest reliability for the SDMT test was: r (combined) = 0.97; r (HC) = 0.98; r (MS) = 0.97. Stars (*) indicate
statistical significance at p < 10− 8

Table 5 Learning bias (practice effect) for ICA and SDMT

Group Test
Name

Test 1
[mean ± SD]

Test 2
[mean ± SD]

Paired t-test

difference Cohen’s d p-value

MS (n = 21) ICA 64.76 ± 12.7 64.66 ± 12.2 − 0.09 − 0.02 0.91

SDMT 43.6 ± 10 44.2 ± 11 0.66 0.25 0.25

HC (n = 22) ICA 77.04 ± 11 76.86 ± 11 −0.18 − 0.07 0.73

SDMT 55.13 ± 12 56.36 ± 12.3 1.22 0.50 0.02*

Mean and standard deviations (SD) of SDMT and ICA scores are compared between the two administrations of the tests for each group of participants. Only SDMT
in healthy subjects showed a significant learning bias
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corroborates previous findings that lower cognitive per-
formance is linked with higher disability (i.e. as indicated
by higher EDSS scores).
In contrast to most of the currently standard cognitive

tests, whereby stimuli are language-dependent, the pre-
sented stimuli in the ICA test are natural images that
contain universally recognizable images of animals or
objects, thus making the test intrinsically language-
independent. Furthermore, participants’ responses only
involve tapping on the left or right side of an iPad, mak-
ing it totally independent of participants’ knowledge of
Arabic numerals or alphabet and words, or ability of a
participant to draw shapes (as in BVMT-R). This makes
the ICA test more suitable for wider international use,
and less dependent on linguistic, educational, and
demographic differences.
Computerized tests have several advantages over pen-

and-paper tests, such as a) efficient administration that
can save expensive clinical time, b) automatic scoring,
which reduces errors in calculating and transferring
scores, and c) easier integration with electronic medical
records or research databases. The use of digital technol-
ogy in this context can reduce barriers for both

clinicians and patients to deliver or receive the assess-
ments that would benefit their treatment and health
throughout the course of the disease. With ICA, we
aimed to develop a test that can close the current gap in
clinical practice between patients’ needs and what clini-
cians can offer in terms of the much-needed routine
cognitive assessment and disease monitoring. Such a test
must have a certain set of attributes, in addition to being
sensitive and accurate. Figure 8 summarizes some of the
key attributes of the ICA test, as a computerized test,
that has made it more scalable, accessible and cost-
effective compared to the standard pen-and-paper tests.
In addition, the ICA has some unique features that are
absent from the computerized versions of the standard
cognitive tests, such as the ability to benefit from more
data to improve its performance over time. One basic
difference between the ICA’s classification of patients
(using the AI engine) and the conventional way of defin-
ing an optimal cut-off value for classification is the di-
mensionality (or the number of features) used to make
the classification. For example, in a conventional assess-
ment tool, an optimal cut-off value is defined based on
the test score. This is a one-dimensional classification

Table 6 Age/EDSS/Education vs. BICAMS/ICA

BICAMS

SDMT BVMT-R CVLT-II ICA

Correlation with EDSS −0.41 (p < 10−4) − 0.26 (p < 0.05) −0.33
(p < 0.001)

− 0.58 (p < 10−8)

Education 0.50 (p < 10−6) 0.34
(p < 0.001)

0.31
(p < 0.01)

0.25 (p < 0.05)

Age −0.38 (p < 10−4) − 0.50
(p < 10−5)

−0.42
(p < 10− 4)

−0.49 (p < 10− 6)

The table shows Pearson Correlations of the ICA score and the BICAMS battery of tests with MS patients’ EDSS score, education in years, and their age. EDSS
Expanded Disability Status Scale; BICAMS Brief International Cognitive Assessment for MS; SDMT Symbol Digit Modalities Test; BVMT-R Brief Visual Memory Test–
Revised; CVLT-II California Verbal Learning Test -2nd edition; ICA Integrated Cognitive Assessment

Fig. 8 ICA key features as a computerized test. Eight key attributes of the ICA test that can save expensive clinical time and make the test
scalable and more accessible to wider populations; as well as its capability to use new data as they become available to improve its reliability
over time. The icons used in this figure are taken from Microsoft Office free icon library
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problem, and there is only one free parameter to
optimize, resulting in less flexibility to learn from more
data. In contrast, the ICA generates a richer pool of data
(one reaction time and accuracy result per image). Al-
though the ICA score is the most informative summary
score, the use of a classifier enabled us to find the
optimum classification boundary in the higher dimen-
sional space. With more free parameters to optimize, the
classifier benefited from more data to set these parame-
ters to achieve a higher classification accuracy. The
ICA’s performance can be further improved over time
through new batches of training on additional data to
update its cloud-based AI model.
It is worth noting that while electronic implementa-

tions of the SDMT [50, 51] do exist, they retain two sig-
nificant differences from the ICA. First, the ICA takes
advantage of an AI platform, and thus the capacity to
benefit from big data, as explained before. Second, the
ICA did not show a learning bias in this and a previous
study [19], as opposed to the learning bias reported for
the iPad-based SDMT (i.e. PST) [50].
To make an early diagnosis of MS and monitor disease

activity, reliable biomarkers are required. In Substudy 2,
we demonstrated a strong association between ICA
score and NfL in MS patients. This is particularly of
interest given the totally non-invasive nature of the ICA
test, and its easy and inexpensive scalability for adminis-
tration in large populations. The 8-week follow-up of
the rehabilitation group, compared to the control group,
further shows ICA’s sensitivity to track changes in cog-
nition. For frequent cognitive assessments, digital bio-
markers have an advantage over fluid biomarkers, given
their lower cost, accessibility, the possibility of remote
administration and easier integration into routine clin-
ical practice.
Limitations encountered in this study include the lack

of NfL data from the healthy control group, and the ab-
sence of neuroimaging markers of disease activity. We
acknowledge the relatively short follow-up period of pa-
tients post-rehabilitation. Future studies are needed to
investigate the link between ICA test results and other
measures of brain atrophy, in particular, given the strong
link between ICA and NfL—which reflects neural dam-
age—would be informative to investigate the ICA rela-
tion with cortical thickness in MS patients.

Conclusions
Overall, our results provide evidence for the use of the
ICA in clinical practice as an accurate tool for assessing
cognitive impairment in MS. Digital biomarkers of cog-
nition (such as ICA) can be used to monitor the pro-
gress of cognitive impairment, which subsequently paves
the way for using cognition as a marker of disease activ-
ity in MS. The ICA has the potential to be used as a

high-frequency monitoring tool of treatment efficacy
both in the clinic and remotely such as at patients’
homes. Future longitudinal studies need to test these hy-
potheses in larger patient samples.
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